For Better Performance Please Use Chrome or Firefox Web Browser

Experimental study on solidification process of a phase change material containing TiO2 nanoparticles for thermal energy storage”

The solidification process of n-octadecane as a phase change material (PCM) with dispersed titanium dioxide (TiO2) nanoparticles was experimentally studied. Experiments were performed in a rectangular enclosure cooled from one vertical side corresponding to the solid Stefan numbers in the range 0.17–
0.239. The Rayleigh numbers at the initial of the experiment were in the range 0.92–18.3  106. The rheological behavior of liquid PCM/TiO2 samples at higher concentrations tended to Bingham fluids, thus the solidification experiments were conducted for Bingham numbers in the range 0–2.17. The solidification
process was characterized by visualizing the progression of the solid-liquid interface as well as recording the temperature distribution inside the enclosure. Experimental results showed that heat conduction was the dominant mode of heat transfer during the solidification. Dispersing TiO2 nanoparticles led to enhance in thermal conductance and consequently the increase in solidified volume. An increase of 7%, 9% and 18% in solidified volume fraction was observed at the end of solidification for the mass fractions of 1 wt.%, 2 wt.% and 4 wt.%, respectively. A universal correlation was proposed to predict the solidified volume fraction as a function of Fourier number, Rayleigh number, solid Stefan number, Bingham number and mass fraction of nanoparticles with an error below 11%.

Energy Conversion and Management, Vol. 138, pp. 162–170, 2017

Journal Papers
Month/Season: 
Winter
Year: 
2017

تحت نظارت وف ایرانی